What are model training steps in machine learning ?

There may exist many possible models to solve a given problem at hand. Based on your modeling decision there are usually two different ways to complete the machine learning lifecycle.

  • 1st scenario. Training a single model with a training dataset and final evaluation with the test set.

  • 2nd scenario. Training multiple models with training/validation dataset and final evaluation with the test set.

In case of (1st scenario), you will follow the following approach:

  • Divide the data into training and test sets. (Usually 70/30 splits)

  • Select your preferable model.

  • Train it with a training dataset.

  • Assess the trained model in the test set. (no need to perform validation in your trained model)

In case of (2nd scenario), you will follow the following approach:

  • Divide the data into training, validation, and test sets. (Usually 50/25/25 splits)

  • Select the initial model/architecture.

  • Train the model with a training dataset.

  • Evaluate the model using the validation dataset.

  • Repeat steps (b) through (d) for different models or training parameters.

  • Select the best model based on evaluation and train the best model with combined (training + validation) datasets.

  • Assess the trained model in the test set.

Comments

Comments powered by Disqus